Multimodel SuperEnsemble technique for quantitative precipitation forecasts in Piemonte region
نویسنده
چکیده
The Multimodel SuperEnsemble technique is a powerful post-processing method for the estimation of weather forecast parameters reducing direct model output errors. It has been applied to real time NWP, TRMM-SSM/I based multi-analysis, Seasonal Climate Forecasts and Hurricane Forecasts. The novelty of this approach lies in the methodology, which differs from ensemble analysis techniques used elsewhere. Several model outputs are put together with adequate weights to obtain a combined estimation of meteorological parameters. Weights are calculated by least-square minimization of the difference between the model and the observed field during a so-called training period. Although it can be applied successfully on the continuous parameters like temperature, humidity, wind speed and mean sea level pressure, the Multimodel SuperEnsemble gives good results also when applied on the precipitation, a parameter quite difficult to handle with standard post-processing methods. Here we present our methodology for the Multimodel precipitation forecasts, involving a new accurate statistical method for bias correction and a wide spectrum of results over Piemonte very dense non-GTS weather station network.
منابع مشابه
Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs
[1] A new approach to combine precipitation forecasts from multiple models is evaluated by analyzing the skill of the candidate models contingent on the forecasted predictor(s) state. Using five leading coupled GCMs (CGCMs) from the ENSEMBLES project, we develop multimodel precipitation forecasts over the continental United States (U.S) by considering the forecasted Nino3.4 from each CGCM as th...
متن کاملMultiphysics superensemble forecast applied to Mediterranean heavy precipitation situations
The high-impact precipitation events that regularly affect the western Mediterranean coastal regions are still difficult to predict with the current prediction systems. Bearing this in mind, this paper focuses on the superensemble technique applied to the precipitation field. Encouraged by the skill shown by a previous multiphysics ensemble prediction system applied to western Mediterranean pre...
متن کاملIndividual versus superensemble forecasts of seasonal influenza outbreaks in the United States
Recent research has produced a number of methods for forecasting seasonal influenza outbreaks. However, differences among the predicted outcomes of competing forecast methods can limit their use in decision-making. Here, we present a method for reconciling these differences using Bayesian model averaging. We generated retrospective forecasts of peak timing, peak incidence, and total incidence f...
متن کاملA comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data
This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...
متن کاملImproved Skill for the Anomaly Correlation of Geopotential Heights at 500 hPa
This paper addresses the anomaly correlation of the 500-hPa geopotential heights from a suite of global multimodels and from a model-weighted ensemble mean called the superensemble. This procedure follows a number of current studies on weather and seasonal climate forecasting that are being pursued. This study includes a slightly different procedure from that used in other current experimental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010